AFM for Nanoelectrical Measurements

Asylum Research offers a full suite of tools for characterizing electrical properties at the nanoscale on the MFP-3D™ and Cypher™ families of AFMs. While quantitative electrical measurement in itself is the goal, electrical modes are also often used to quickly detect, distinguish, and identify components based on qualitative differences in electric properties relative to other materials in the sample.

AFM Nanoelectrical Measurement Modes

  • Kelvin Probe Force Microscopy (KPFM) - accurately measures surface potential based on differences in work function, presence of trapped charges, or voltage offsets.
  • Electric Force Microscopy (EFM) - maps force gradients generated by electrostatic charges
  • Conductive AFM (CAFM) - measures current through the tip as a function of an applied sample bias
  • Current Mapping with Fast Force Mapping - measures current at an applied sample bias during the contact segment of a fast force curve
  • Scanning Microwave Impedance Microscopy (sMIM) - maps variations in local capacitance and resistance, as well as dC/dV and dR/dV
  • Nanoscale Time Dependent Dielectric Breakdown (nanoTDDB) - detects breakdown voltage of dielectric thin films
  • Detect conductive inclusions in polymer blends
  • Monitor the uniformity of thin film coverage and thickness
  • Probe metallic nanostructures based on their work function
  • Characterize potential profiles of semiconductor junctions and heterostructures
  • Identify regions of a sample containing trapped charge
  • Detect carbon nanotubes buried in insulating matrix
  • Characterize the switching performance of access devices in non-volatile memory
  • Characterize a wide range of linear and non-linear materials, including conductors, semiconductors, and insulators
  • Provide contrast based on material permittivity and conductivity
  • Map dopant concentrations and dopant types, with applications in failure analysis of microelectronic devices
  • Qualify carbon nanotubes exhibiting metallic vs. semimetallic behavior
  • Visualize buried structures based on capactance variations measured at the surface


Application Notes: Probing Electrical Properties

	AFM Tools for Electrical Characterization

AFM Tools for Electrical Characterization

An in-depth look at tools and techniques to evaluate local electrical properties.

	Conductive AFM (CAFM)

Conductive AFM (CAFM)

Detailed discussion of conductive AFM (CAFM) using Asylum’s exclusive ORCA modules.

	Piezoresponse Force Microscopy (PFM)

Piezoresponse Force Microscopy (PFM)

Detailed discussion of piezoresponse force microscopy (PFM) techniques, many exclusive to Asylum AFMs.

	Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM) measures conductivity and permittivity at high resolution.


Selected Publications

I. Beinik, M. Kratzer, A. Wachauer, L. Wang, R. T. Lechner, C. Teichert, C. Motz, W. Anwand, G. Brauer, X. Y. Chen, X. Y. Hsu, and A. B. Djurisvic, "Electrical properties of ZnO nanorods studied by conductive atomic force microscopy," J. Appl. Phys. 110, 052005 (2011). doi:10.1063/1.3623764

P. Birjukovs, N. Petkov, J. Xu, J. Svirksts, J. J. Boland, J. D. Holmes, and D. Erts, "Electrical Characterization of Bismuth Sulfide Nanowire Arrays by Conductive Atomic Force Microscopy," J. Phys. Chem. C 112, 19680-19685 (2008). doi:10.1021/jp805422k

K. A. Brown, K. J. Satzinger, and R. M. Westervelt, "High spatial resolution Kelvin probe force microscopy with coaxial probes," Nanotechnology 23, 115703 (2012). doi:10.1088/0957-4484/23/11/115703

C. M. Chang, Y. J. Liu, M. L. Tseng, N.-N. Chu, D.-W. Huang, M. Mansuripur, and D. P. Tsai, "Characterization of Ge2Sb2Te5 thin film alloys using conductive-tip atomic force microscopy," Phys. Status Solidi B 249, 1945-1950 (2012). doi:10.1002/pssb.201200356

D. C. Coffey, and D. S. Ginger, "Time-resolved electrostatic force microscopy of polymer solar cells," Nat. Mater. 5, 735-740 (2006). doi:10.1038/nmat1712

D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, "Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy," Nano Lett. 7, 738-744 (2007). doi:10.1021/nl062989e

M. Diamanti, T. Souier, M. Stefancich, M. Chiesa, and M. Pedeferri, "Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques," Electrochim. Acta 129, 203-210 (2014). doi:10.1016/j.electacta.2014.02.098

N. J. Economou, S. Mubeen, S. K. Buratto, and E. W. McFarland, "Investigation of Arrays of Photosynthetically Active Heterostructures Using Conductive Probe Atomic Force Microscopy," Nano Lett. 14, 3328-3334 (2014). doi:10.1021/nl500754q

B. Garipcan, J. Winters, J. S. Atchison, M. D. Cathell, J. D. Schiffman, O. D. Leaffer, S. S. Nonnenmann, C. L. Schauer, E. Piskin, B. Nabet, and J. E. Spanier, "Controllable Formation of Nanoscale Patterns on TiO2 by Conductive-AFM Nanolithography," Langmuir 24, 8944-8949 (2008). doi:10.1021/la800911x

R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, "Non-volatile memory based on the ferroelectric photovoltaic effect," Nat. Commun. 4, 1990 (2013). doi:10.1038/ncomms2990

N. Knorr, S. Rosselli, T. Miteva, and G. Nelles, "Biased-probe-induced water ion injection into amorphous polymers investigated by electric force microscopy," J. Appl. Phys. 105, 114111 (2009). doi:10.1063/1.3143604

J. K. Li, S. Zou, D. A. Rider, I. Manners, and G. C. Walker, "Differential Conductivity in Self-Assembled Nanodomains of a Diblock Copolymer Using Polystyrene-block-Poly(ferrocenylethylmethylsilane)," Adv. Mater. 20, 1989-1993 (2008). doi:10.1002/adma.200702796

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, "Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties," J. Am. Chem. Soc. 131, 7792-7799 (2009). doi:10.1021/ja901545q

W. J. Liu, H. Y. Yu, S. H. Xu, Q. Zhang, X. Zou, J. L. Wang, K. L. Pey, J. Wei, H. L. Zhu, and M. F. Li, "Understanding Asymmetric Transportation Behavior in Graphene Field-Effect Transistors Using Scanning Kelvin Probe Microscopy," IEEE Electron Device Lett. 32, 128-130 (2011). doi:10.1109/led.2010.2093500

C. Maragliano, S. Lilliu, M. S. Dahlem, M. Chiesa, T. Souier, and M. Stefancich, "Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy," Sci. Rep. 4, 4203 (2014). doi:10.1038/srep04203

J.-U. Park, S. Lee, S. Unarunotai, Y. Sun, S. Dunham, T. Song, P. M. Ferreira, A. G. Alleyene, U. Paik, and J. A. Rogers, "Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge," Nano Lett. 10, 584-591 (2010). doi:10.1021/nl903495f

L. Prisbrey, T. DeBorde, J.-Y. Park, and E. D. Minot, "Controlling the function of carbon nanotube devices with re-writable charge patterns," Appl. Phys. Lett. 99, 053125 (2011). doi:10.1063/1.3622138

O. G. Reid, K. Munechika, and D. S. Ginger, "Space Charge Limited Current Measurements on Conjugated Polymer Films using Conductive Atomic Force Microscopy," Nano Lett. 8, 1602-1609 (2008). doi:10.1021/nl080155l

K. J. Satzinger, K. A. Brown, and R. M. Westervelt, "The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy," J. Appl. Phys. 112, 064510 (2012). doi:10.1063/1.4754313

G. Shao, M. S. Glaz, F. Ma, H. Ju, and D. S. Ginger, "Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics," ACS Nano 8, 10799-10807 (2014). doi:10.1021/nn5045867

G. Shao, G. E. Rayermann, E. M. Smith, and D. S. Ginger, "Morphology-Dependent Trap Formation in Bulk Heterojunction Photodiodes," J. Phys. Chem. B 117, 4654-4660 (2013). doi:10.1021/jp3090843

J. Song, J. Zhou, and Z. L. Wang, "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment," Nano Lett. 6, 1656-1662 (2006). doi:10.1021/nl060820v

Single-Walled Carbon Nanotubes for Nanoelectronics

Conductive AFM image of a SRAM chip. The conductivity channel is overlaid on the rendered topography with lighter areas indicating higher current. 5 µm scan. Imaged with the MFP-3D AFM.
Asylum's AFM Workshop and Open Lab is coming to Purdue Univ. May 8-10. See the first and only full-featured video-r…
12:22 AM - 12 Apr 18
View more of our tweets