AFM for Magnetics / Data Storage Research

Magnetic force microscopy (MFM) opened up the study of submicrometer magnetic domains. The technique has especially found a central place in the magnetic data storage industry, i.e., in the imaging of magnetic media and devices, whether in the analysis of magnetically recorded bits or in the performance of transducers that read/write them. MFM is also used in fundamental research of magnetic materials and composites, from nanoparticles and nanowires to ferritin proteins. More recently, MFM has been used in tandem with piezoelectric force microscopy (PFM) to characterize multiferroic composites that exhibit magnetoelectric coupling. These composites that consist of both magnetorestrictive and piezoelectric components can also be characterized by operating PFM under an applied in-plane magnetic field using a variable field module (VFM). Research on these novel magnetic materials are driven by the search for higher density data storage media, high-speed, low-power spintronic devices for computing, and a new class of dual electric-field- and magnetic-field-tunable signal-processing devices.
 

Capabilities

  • Magnetic force microscopy (MFM)
  • Variable Field Module (VFM)
  • Piezoelectric Force Microscopy (PFM)
  • Band Excitation (BE)

Common Applications

  • Data storage materials
  • Magnetoresistive materials for read heads
  • Multiferroic composites for multiple-state memory devices
  • Spintronic devices, spin transistors, quantum computing
  • Solid-state transformers
  • Gyrators
  • High sensitivity magnetic field and current sensors
  • Electromagnetooptic actuators
  • Novel signal-processing devices: resonators, filters, phase shifters, delay lines, attenuators, and miniature antennas
  • High performance microwave and millimeter-wave resonators

VFM3™ Variable Field Module for Magnetic AFM Applications
Asylum Research has developed a third generation Variable Field Module for the MFP-3D™ Atomic Force Microscopes (AFM). This module is useful for magnetic force microscopy (MFM), conductive AFM (C-AFM), and other applications where the sample’s properties are magnetic field dependent. The VFM3 can apply static magnetic fields up to ±0.8 Tesla (~1 G resolution), parallel to the sample plane. 
PDF 1.78MB
Magnetic Force Microscopy Under Applied Perpendicular Fields with Asylum Research AFMs

Understanding and engineering magnetic properties at the nanoscale is one of the key challenges in developing next-generation data storage and logic elements. The Variable Field Module (VFM3) accessory for Asylum Research MFP-3D AFMs allows us to directly observe magnetic configurations at the nanoscale using magnetic force microscopy (MFM) while the sample is under either in-plane or out-ofplane applied magnetic fields.

PDF 3.62MB

Asylum Research Image Gallery

Selected Publications

A. Azizi, A. Yourdkhani, D. Cutting, G. Caruntu, and N. S. Pesika, "Tuning the Crystal Structure and Magnetic Properties of CoNiFeB Thin Films," Chem. Mater. 25, 2510-2514 (2013). doi:10.1021/cm400861h

S. N. Babu, S.-G. Min, A. Yourdkhani, G. Caruntu, and L. Malkinski, "Magnetoelectric effect in AlN/CoFe bi-layer thin film composites," J. Appl. Phys. 111, 07C720 (2012). doi:10.1063/1.3679042

G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, "Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy," Nanoscale 4, 3218 (2012). doi:10.1039/c2nr00064d

D. Fragouli, B. Torre, F. Villafiorita-Monteleone, A. Kostopoulou, G. Nanni, A. Falqui, A. Casu, A. Lappas, R. Cingolani, and A. Athanassiou, "Nanocomposite Pattern-Mediated Magnetic Interactions for Localized Deposition of Nanomaterials," ACS Appl. Mater. Interfaces 5, 7253-7257 (2013). doi:10.1021/am401600f

K. R. Gadelrab, G. Li, M. Chiesa, and T. Souier, "Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation," J. Mater. Res. 27, 1573-1579 (2012). doi:10.1557/jmr.2012.99

T. S. Herng, M. F. Wong, D. Qi, J. Yi, A. Kumar, A. Huang, F. C. Kartawidjaja, S. Smadici, P. Abbamonte, C. Sánchez-Hanke, S. Shannigrahi, J. M. Xue, J. Wang, Y. P. Feng, A. Rusydi, K. Zeng, and J. Ding, "Mutual Ferromagnetic-Ferroelectric Coupling in Multiferroic Copper-Doped ZnO," Adv. Mater. 23, 1635-1640 (2011). doi:10.1002/adma.201004519

C.-W. Hsieh, B. Zheng, and S. Hsieh, "Ferritin protein imaging and detection by magnetic force microscopy," Chem. Commun. 46, 1655 (2010). doi:10.1039/b912338e

S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, "The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale," Nanotechnology 18, 435503 (2007). doi:10.1088/0957-4484/18/43/435503

J. W. Li, J. P. Cleveland, and R. Proksch, "Bimodal magnetic force microscopy: Separation of short and long range forces," Appl. Phys. Lett. 94, 163118 (2009). doi:10.1063/1.3126521

Y. Li, K. Xu, S. Hu, J. Suter, D. K. Schreiber, P. Ramuhalli, B. R. Johnson, and J. McCloy, "Computational and experimental investigations of magnetic domain structures in patterned magnetic thin films," J. Phys. D: Appl. Phys. 48, 305001 (2015). doi:10.1088/0022-3727/48/30/305001

W. I. Liang, Y. Liu, S. C. Liao, W. C. Wang, H. J. Liu, H. J. Lin, C. T. Chen, C. H. Lai, A. Borisevich, E. Arenholz, J. Li, and Y. H. Chu, "Design of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction," J. Mater. Chem. C 2, 811-815 (2014). doi:10.1039/c3tc31987c

H. Miao, X. Zhou, S. Dong, H. Luo, and F. Li, "Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy," Nanoscale 6, 8515 (2014). doi:10.1039/c4nr01910e

K. Prashanthi, P. M. Shaibani, A. Sohrabi, T. S. Natarajan, and T. Thundat, "Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires," Phys. Status Solidi RRL 6, 244-246 (2012). doi:10.1002/pssr.201206135

S. Schreiber, M. Savla, D. V. Pelekhov, D. F. Iscru, C. Selcu, P. C. Hammel, and G. Agarwal, "Magnetic Force Microscopy of Superparamagnetic Nanoparticles," Small 4, 270-278 (2008). doi:10.1002/smll.200700116

M. P. Seymour, I. Wilding, B. Xu, J. I. Mercer, M. L. Plumer, K. M. Poduska, A. Yethiraj, and J. van Lierop, "Micromagnetic modeling of experimental hysteresis loops for heterogeneous electrodeposited cobalt films," Appl. Phys. Lett. 102, 072403 (2013). doi:10.1063/1.4793209

B. Torre, G. Bertoni, D. Fragouli, A. Falqui, M. Salerno, A. Diaspro, R. Cingolani, and A. Athanassiou, "Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles," Sci. Rep. 1, 202 (2011). doi:10.1038/srep00202

I. Vrejoiu, D. Preziosi, A. Morelli, and E. Pippel, "Multiferroic PbZrxTi1-xO3/Fe3O4 epitaxial sub-micron sized structures," Appl. Phys. Lett. 100, 102903 (2012). doi:10.1063/1.3692583

S. Xie, F. Ma, Y. Liu, and J. Li, "Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling," Nanoscale 3, 3152 (2011). doi:10.1039/c1nr10288e

S. H. Xie, X. Y. Liu, Y. C. Zhou, and J. Y. Li, "Correlation of magnetic domains and magnetostrictive strains in Terfenol-D via magnetic force microscopy," J. Appl. Phys. 109, 063911 (2011). doi:10.1063/1.3559819

F. Yan, G. Chen, L. Lu, P. Finkel, and J. E. Spanier, "Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3-CoFe2O4 thin-film nanocomposite," Appl. Phys. Lett. 103, 042906 (2013). doi:10.1063/1.4816793

T. Yang, N. R. Pradhan, A. Goldman, A. S. Licht, Y. Li, M. Kemei, M. T. Tuominen, and K. E. Aidala, "Manipulation of magnetization states of ferromagnetic nanorings by an applied azimuthal Oersted field," Appl. Phys. Lett. 98, 242505 (2011). doi:10.1063/1.3599714

Asylum's AFM Workshop and Open Lab is coming to Purdue Univ. May 8-10. See the first and only full-featured video-r… https://t.co/afJgHnqlwv
12:22 AM - 12 Apr 18
View more of our tweets