AFM for Polymer Research

Polymers are ubiquitous in materials science research as well as everyday life products. Polymer properties are varied and AFM is an excellent tool to study them on many levels. In addition to accurate measurement of polymer film topography, the wide range of AFM techniques available on Asylum Research instruments allows for study of diverse polymer properties ranging from molecular chain arrangement in crystallites to domain modulus and conductivity.
 

Capabilities

  • Surface morphology and roughness measurements
  • Quantitative nanomechanical properties including viscoelasticity (AM-FM and CR-DART)
  • Fast imaging for observation of crystallization and melting processes
  • Controlled heating and cooling of samples
  • Electrical measurements such as photoconductivity and electrochemical strain
  • Environmental control of gas type and humidity around the sample
  • Thermal analysis (Ztherm)
  • Built-in lithography tools
  • Single molecule force spectroscopy experiments

Common Applications

  • Nanomechanical (modulus, viscoelasticity) properties of components in polymer blends and polymer composites
  • Commercial packaging quality testing
  • Measurement of layer thickness and uniformity
  • Material strain testing
  • Organic electronics - photoconductivity of organic solar cells
  • Single chain polymer stretching  
  • Thermal phase transitions- melting and crystallization

 

Asylum Research Image Gallery

Measuring Nanomechanical Properties


	AM-FM Viscoelastic Mapping Mode

AM-FM Viscoelastic Mapping Mode

Quantitatively maps storage modulus and loss tangent over a wide modulus range (~50 kPa - 300 GPa).


	Contact Resonance Viscoelastic Mapping Mode

Contact Resonance Viscoelastic Mapping Mode

Quantitatively maps storage modulus and loss tangent over a wide modulus range (1 GPa - 300 GPa).


	Bimodal (Dual AC) Imaging

Bimodal (Dual AC) Imaging

Qualitatively maps variations in material properties. Simple to use and more sensitive than phase imaging.


	NanoRack Stretch Stage

NanoRack Stretch Stage

Investigate deformation and interfacial adhesion as a function of stress with tensile strain up to 80 N.


	NanomechPro Toolkit

NanomechPro Toolkit

Describes the complete set of complementary tools for investigating nanomechanical properties.

Measuring Thermal Properties


	PolyHeater for MFP-3D AFMs

PolyHeater for MFP-3D AFMs

The MFP-3D PolyHeater heats samples up to 300° (optionally 400°) in a controlled gas environment.


	CoolerHeater for MFP-3D AFMs

CoolerHeater for MFP-3D AFMs

The MFP-3D CoolerHeater operates from -30°C to 120°C in either gas or liquid environments.


	Heater for Cypher ES AFMs

Heater for Cypher ES AFMs

The Cypher ES Heater heats samples up to 250° in a controlled gas environment. 


	CoolerHeater for Cypher ES AFMs

CoolerHeater for Cypher ES AFMs

The Cypher CoolerHeater operates from 0°C to 120°C in either gas or liquid environments.


	Ztherm Modulated Thermal Analysis

Ztherm Modulated Thermal Analysis

Ztherm measures thermally induced transitions (e.g. Tm or Tg) in sub-zeptoliter volumes.


	Scanning Thermal Microscopy (SThM)

Scanning Thermal Microscopy (SThM)

SThM enables single point measurements or mapping of temperature at thermal conductivity at high resolution.

Probing Electrical and Functional Behavior


	Overview of Electrical Techniques

Overview of Electrical Techniques

Overview of Asylum's full range of electrical characterization techniques.


	Conductive AFM (CAFM)

Conductive AFM (CAFM)

Detailed discussion of conductive AFM (CAFM) using Asylum’s exclusive ORCA modules.


	Piezoresponse Force Microscopy (PFM)

Piezoresponse Force Microscopy (PFM)

Detailed discussion of piezoresponse force microscopy (PFM) techniques, many exclusive to Asylum AFMs.


	Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM) measures conductivity and permittivity at high resolution.

Related Webinars


	"Beyond Topography: New Advances in AFM Characterization of Polymers"

"Beyond Topography: New Advances in AFM Characterization of Polymers"

This webinar provides an overview of the AFM’s powerful capabilities for polymers characterization.


	"There's No Other AFM Like Cypher: Recent Technological Advances"

"There's No Other AFM Like Cypher: Recent Technological Advances"

Review of the many technologies and capabilities that make Cypher different from every other AFM.


	“Introduction and Innovations in High Speed Quantitative Nanomechanical Imaging”

“Introduction and Innovations in High Speed Quantitative Nanomechanical Imaging”

Capabilities and challenges of AFM techniques for measuring nanomechanical properties.


	"Contact Resonance Tools for AFM Nanomechanics"

"Contact Resonance Tools for AFM Nanomechanics"

Contact Resonance Viscoelastic Mapping Mode technology and applications.


	"AFM Imaging and Nanomechanics with blueDrive Photothermal Excitation"

"AFM Imaging and Nanomechanics with blueDrive Photothermal Excitation"

blueDrive Photothermal Cantilever Excitation- theory, advantages, and real-world examples.


	"Smaller and Quieter: Ultra-High Resolution AFM Imaging"

"Smaller and Quieter: Ultra-High Resolution AFM Imaging"

High speed and low noise advantages of small cantilevers on Cypher AFMs.

Selected Publications

D. C. Coffey, and D. S. Ginger, "Time-resolved electrostatic force microscopy of polymer solar cells," Nat. Mater. 5, 735-740 (2006). doi:10.1038/nmat1712

A. Elbourne, K. Voïtchovsky, G. G. Warr, and R. Atkin, "Ion structure controls ionic liquid near-surface and interfacial nanostructure," Chem. Sci. 6, 527-536 (2015). doi:10.1039/c4sc02727b

A. Gelmi, M. J. Higgins, and G. G. Wallace, "Resolving Sub-Molecular Binding and Electrical Switching Mechanisms of Single Proteins at Electroactive Conducting Polymers," Small 9, 393-401 (2012). doi:10.1002/smll.201201686

R. Giridharagopal, G. Shao, C. Groves, and D. S. Ginger, "New SPM techniques for analyzing OPV materials," Mater. Today 13, 50-56 (2010). doi:10.1016/s1369-7021(10)70165-6

T. Gkourmpis, C. Svanberg, S. K. Kaliappan, W. Schaffer, M. Obadal, G. Kandioller, and D. Tranchida, "Improved electrical and flow properties of conductive polyolefin blends: Modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene–propylene copolymer," Eur. Polym. J. 49, 1975-1983 (2013). doi:10.1016/j.eurpolymj.2013.03.003

C. A. Grant, A. Alfouzan, T. Gough, P. C. Twigg, and P. D. Coates, "Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM)," Micron 44, 174-178 (2013). doi:10.1016/j.micron.2012.06.004

E. T. Herruzo, A. P. Perrino, and R. Garcia, "Fast nanomechanical spectroscopy of soft matter," Nat. Commun. 5, 3126 (2014). doi:10.1038/ncomms4126

M. J. Higgins, W. Grosse, K. Wagner, P. J. Molino, and G. G. Wallace, "Reversible Shape Memory of Nanoscale Deformations in Inherently Conducting Polymers without Reprogramming," J. Phys. Chem. B 115, 3371-3378 (2011). doi:10.1021/jp112045k

C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, "Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives," Adv. Mater. 22, E63-E66 (2010). doi:10.1002/adma.200903677

S. Kienle, T. Pirzer, S. Krysiak, M. Geisler, and T. Hugel, "Measuring the interaction between ions, biopolymers and interfaces – one polymer at a time," Faraday Discuss. 160, 329-340 (2013). doi:10.1039/c2fd20069d

M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, "Contact resonance atomic force microscopy imaging in air and water using photothermal excitation," Rev. Sci. Instrum. 86, 083706 (2015). doi:10.1063/1.4928105

N. T. Lawrence, J. M. Kehoe, D. B. Hoffman, C. Marks, J. M. Yarbrough, G. M. Atkinson, R. A. Register, M. J. Fasolka, and M. L. Trawick, "Combinatorial Mapping of Substrate Step Edge Effects on Diblock Copolymer Thin Film Morphology and Orientation," Macromol. Rapid Commun. 31, 1003-1009 (2010). doi:10.1002/marc.200900912

I. T. S. Li, and G. C. Walker, "Signature of hydrophobic hydration in a single polymer," PNAS 108, 16527-16532 (2011). doi:10.1073/pnas.1105450108

M. P. Nikiforov, S. Hohlbauch, W. P. King, K. Voïtchovsky, S. A. Contera, S. Jesse, S. V. Kalinin, and R. Proksch, "Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane," Nanotechnology 22, 055709 (2010). doi:10.1088/0957-4484/22/5/055709

J. Roh, D. Roy, W. Lee, A. Gergely, J. Puskas, and C. Roland, "Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers," Polymer 56, 280-283 (2015). doi:10.1016/j.polymer.2014.11.015

P. Samorì, M. Surin, V. Palermo, R. Lazzaroni, and P. Leclère, "Functional polymers: scanning force microscopy insights," Phys. Chem. Chem. Phys. 8, 3927 (2006). doi:10.1039/b607502a

D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, "Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy," Macromolecules 45, 4363-4370 (2012). doi:10.1021/ma2028038

N. A. Yufa, J. Li, and S. Sibener, "Diblock copolymer healing," Polymer 50, 2630-2634 (2009). doi:10.1016/j.polymer.2009.03.037