AFM for Thin Films and Coatings

Thin films and coatings play a critical role in everything from food containers to photovoltaics. To meet such varied needs, they are made from every class of materials and by numerous processes, including deposition, self-assembly, and sol-gel techniques. AFM is a powerful tool for characterizing thin films and coatings, providing valuable information critical to performance. It quantifies 3D roughness and texture with unmatched spatial resolution, and measures nanoscale functionality including electrical, magnetic, and mechanical properties. The intrinsic dimensions of these films (thickness, grain and domain sizes, etc.) make it important to characterize them at sub-nanometer to micrometer resolutions. In addition, the ability to measure functional properties simultaneously at these length scales has become a key aspect of thin film engineering for targeted applications. AFM provides critical information in the development, optimization, and monitoring of thin film growth processes, and in rationalizing design pathways to achieve desired functional properties.


  • Surface roughness
  • Uniformity, polydispersity
  • Morphology
  • Particle analysis
  • Film thickness
Electrical properties
  • Conductivity and permittivity (sMIM, CAFM)
  • Surface potential (KPFM)
  • Stored charge (EFM)
  • I-V profiles (CAFM, Force Mapping)
  • Dielectric breakdown (nanoTDDB)
Magnetic properties
  • Magnetic force gradients (MFM)
  • Magnetic hysteresis (MFM, VFM)
  • Magnetoelectric coupling (MFM, PFM, VFM)
Mechanical properties
  • Stiffness, Young's modulus (Force Curves, Force Mapping, AM-FM, CR)
  • Elastic modulus, loss modulus, tangent delta (AM-FM, CR, Loss Tangent Imaging)
  • Energy dissipation (AM-FM, CR, Loss Tangent Imaging, BE)
Piezoelectric properties
  • Electromechanical response (PFM)
  • Domain polarity (PFM)
  • Piezo-hysteresis (PFM)
Tribological properties
  • Friction (LFM)
  • Adhesion (Force Curves, FFM)
  • Wear (LFM)
Thermal properties
  • Thermal conductivity (SThM)
  • Thermomechanical response (ZTherm)
  • Phase transitions (ZTherm)

Common Applications

  • Batteries and energy storage
  • Biocompatibility 
  • Corrosion and antifouling
  • Data storage
  • Ferroelectrics and piezoelectrics
  • Optics
  • Photovoltaics
  • Semiconductor and microelectronic industries
  • Sensors and actuators including MEMS (microelectromechanical systems)
  • Tissue engineering and stem-cell research
  • Tribology

Typical thin film deposition processes:

  • ALD (atomic layer deposition)
  • CVD (chemical vapor deposition)
  • MBE (molecular beam epitaxy)
  • PLD (pulsed laser deposition)
  • PVD (physical vapor deposition)
  • Self assembly
  • Sputtering
  • Spin casting
  • Thermal evaporation

AFM Characterization of Thin Films: High-Resolution Topography and Functional Properties

Asylum Research Cypher™ and MFP-3D™ atomic force microscopes (AFMs) provide valuable information for characterizing thin films and coatings. They quantify 3D roughness and texture with unmatched spatial resolution and measure nanoscale functionality including electrical, magnetic, and mechanical behavior.

PDF 3.52MB
Measuring Surface Roughness with AFM

The most commonly made AFM measurement on thin films and coatings is surface roughness. Often the roughness of the film or coating is important to its function. However, even where the roughness is not itself a critical parameter, the roughness is commonly used to monitor the quality and consistency of the deposition process. In this way, the roughness may be used as a leading indicator and predictor of possible functional issues that are less easily measured and monitored.

PDF 2.40MB

Thin film and coating examples can be found throughout the gallery, so be sure to browse other categories too.

Measuring Nanomechanical Properties

	AM-FM Viscoelastic Mapping Mode

AM-FM Viscoelastic Mapping Mode

Quantitatively maps storage modulus and loss tangent over a wide modulus range (~50 kPa - 300 GPa).

	Contact Resonance Viscoelastic Mapping Mode

Contact Resonance Viscoelastic Mapping Mode

Quantitatively maps storage modulus and loss tangent over a wide modulus range (1 GPa - 300 GPa).

	NanomechPro Toolkit

NanomechPro Toolkit

Describes the complete set of complementary tools for investigating nanomechanical properties.

Probing Electrical and Functional Behavior

	AFM Tools for Nanoscale Electrical Characterization

AFM Tools for Nanoscale Electrical Characterization

Overview of Asylum's full range of electrical characterization techniques

	Conductive AFM (CAFM)

Conductive AFM (CAFM)

Detailed discussion of conductive AFM (CAFM) using Asylum’s exclusive ORCA modules.

	Piezoresponse Force Microscopy (PFM)

Piezoresponse Force Microscopy (PFM)

Detailed discussion of piezoresponse force microscopy (PFM) techniques, many exclusive to Asylum AFMs.

	Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM)

Scanning Microwave Impedance Microscopy (sMIM) measures conductivity and permittivity at high resolution.

Related Webinars

	"More Than Just Roughness: AFM Techniques for Thin Film Analysis"

"More Than Just Roughness: AFM Techniques for Thin Film Analysis"

Explores the powerful capabilities of today’s AFMs for characterizing thin films. 

	"Beyond Topography: New Advances in AFM Characterization of Polymers"

"Beyond Topography: New Advances in AFM Characterization of Polymers"

This webinar provides an overview of the AFM’s powerful capabilities for polymers characterization.

	“Introduction and Innovations in High Speed Quantitative Nanomechanical Imaging”

“Introduction and Innovations in High Speed Quantitative Nanomechanical Imaging”

Capabilities and challenges of AFM techniques for measuring nanomechanical properties.

	"Contact Resonance Tools for AFM Nanomechanics"

"Contact Resonance Tools for AFM Nanomechanics"

Contact Resonance Viscoelastic Mapping Mode technology and applications.

Selected Publications

S. Babar, T. T. Li, and J. R. Abelson, "Role of nucleation layer morphology in determining the statistical roughness of CVD-grown thin films," J. Vac. Sci. Technol. A 32, 060601 (2014). doi:10.1116/1.4895106

B. Cappella, and D. Silbernagl, "Nanomechanical properties of polymer thin films measured by force-distance curves," Thin Solid Films 516, 1952-1960 (2008). doi:10.1016/j.tsf.2007.09.042

G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, "Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy," Nanoscale 4, 3218 (2012). doi:10.1039/c2nr00064d

Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, "Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films," Adv. Funct. Mater. 21, 133-138 (2010). doi:10.1002/adfm.201001867

K.-H. Chung, K. Bhadriraju, T. A. Spurlin, R. F. Cook, and A. L. Plant, "Nanomechanical Properties of Thin Films of Type I Collagen Fibrils," Langmuir 26, 3629-3636 (2010). doi:10.1021/la903073v

D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, "Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy," Nano Lett. 7, 738-744 (2007). doi:10.1021/nl062989e

A. R. Damodaran, S. Lee, J. Karthik, S. MacLaren, and L. W. Martin, "Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films," Phys. Rev. B 85, 024113 (2012). doi:10.1103/physrevb.85.024113

A. Duk, M. Schmidbauer, and J. Schwarzkopf, "Anisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin films grown on (110) TbScO3," Appl. Phys. Lett. 102, 091903 (2013). doi:10.1063/1.4794405

P. A. George, B. C. Donose, and J. J. Cooper-White, "Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion," Biomaterials 30, 2449-2456 (2009). doi:10.1016/j.biomaterials.2009.01.012

I. A. Golovchanskiy, A. V. Pan, S. A. Fedoseev, and M. Higgins, "Significant tunability of thin film functionalities enabled by manipulating magnetic and structural nano-domains," Appl. Surf. Sci. 311, 549-557 (2014). doi:10.1016/j.apsusc.2014.05.107

M. Gu, S. A. Wolf, and J. Lu, "Two-Dimensional Mott Insulators in SrVO3 Ultrathin Films," Adv. Mater. Interfaces 1, 1300126 (2014). doi:10.1002/admi.201300126

C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, "Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives," Adv. Mater. 22, E63-E66 (2010). doi:10.1002/adma.200903677

J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, "An in situ AFM Study of the Evolution of Surface Roughness for Zinc Electrodeposition within an Imidazolium Based Ionic Liquid Electrolyte," Electrochim. Acta 152, 161-171 (2015). doi:10.1016/j.electacta.2014.11.091

A. Li, S. N. Ramakrishna, P. C. Nalam, E. M. Benetti, and N. D. Spencer, "Stratified Polymer Grafts: Synthesis and Characterization of Layered `Brush' and `Gel' Structures," Adv. Mater. Interfaces 1, (2013). doi:10.1002/admi.201300007

W. Li, K. H. Hendriks, W. S. C. Roelofs, Y. Kim, M. M. Wienk, and R. A. J. Janssen, "Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films," Adv. Mater. 25, 3182-3186 (2013). doi:10.1002/adma.201300017

Y. Liu, M. Clark, Q. Zhang, D. Yu, D. Liu, J. Liu, and G. Cao, "V2O5 Nano-Electrodes with High Power and Energy Densities for Thin Film Li-Ion Batteries," Adv. Energy Mater. 1, 194-202 (2011). doi:10.1002/aenm.201000037

D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, "Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films," Nano Lett. 10, 2555-2561 (2010). doi:10.1021/nl101187a

T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, "Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion," Mater. Chem. Phys. 143, 668-675 (2014). doi:10.1016/j.matchemphys.2013.09.052

P. C. Nalam, S. N. Ramakrishna, R. M. Espinosa-Marzal, and N. D. Spencer, "Exploring Lubrication Regimes at the Nanoscale: Nanotribological Characterization of Silica and Polymer Brushes in Viscous Solvents," Langmuir 29, 10149-10158 (2013). doi:10.1021/la402148b

L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, "The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport," J. Phys. Chem. C 112, 7922-7927 (2008). doi:10.1021/jp711838h

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol. 6, 147-150 (2011). doi:10.1038/nnano.2010.279

O. G. Reid, G. E. Rayermann, D. C. Coffey, and D. S. Ginger, "Imaging Local Trap Formation in Conjugated Polymer Solar Cells: A Comparison of Time-Resolved Electrostatic Force Microscopy and Scanning Kelvin Probe Imaging," J. Phys. Chem. C 114, 20672-20677 (2010). doi:10.1021/jp1056607

E. Sengupta, A. L. Domanski, S. A. L. Weber, M. B. Untch, H.-Jü. Butt, T. Sauermann, H. J. Egelhaaf, and Rü. Berger, "Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy," J. Phys. Chem. C 115, 19994-20001 (2011). doi:10.1021/jp2048713

A. B. South, R. E. Whitmire, A. J. Garcia, and L. A. Lyon, "Centrifugal Deposition of Microgels for the Rapid Assembly of Nonfouling Thin Films," ACS Appl. Mater. Interfaces 1, 2747-2754 (2009). doi:10.1021/am9005435

F. Streller, G. E. Wabiszewski, F. Mangolini, G. Feng, and R. W. Carpick, "Tunable, Source-Controlled Formation of Platinum Silicides and Nanogaps from Thin Precursor Films," Adv. Mater. Interfaces 1, (2014). doi:10.1002/admi.201300120

F. Yan, G. Chen, L. Lu, P. Finkel, and J. E. Spanier, "Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3-CoFe2O4 thin-film nanocomposite," Appl. Phys. Lett. 103, 042906 (2013). doi:10.1063/1.4816793

J. Yang, S. Yim, and T. S. Jones, "Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth," Sci. Rep. 5, 9441 (2015). doi:10.1038/srep09441